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At Anderson critical points, the statistics of the two-point transmission 77 for disordered samples of linear
size L is expected to be multifractal with the following properties [Janssen ef al., Phys. Rev. B 59, 15836
(1999)]: (i) the probability to have T; ~ 1/L* behaves as L*®, where the multifractal spectrum ®(«) termi-
nates at k=0 as a consequence of the physical bound 77 = 1; (ii) the exponents X(g) that govern the moments
T¢~1/LX9 become frozen above some threshold: X(g= g.,)=—P(x=0), i.e., all moments of order g = gy
are governed by the measure of the rare samples having a finite transmission (k=0). In the present paper, we
test numerically these predictions for the ensemble of L X L power-law random-banded matrices, where the
random hopping H; ; decays as a power law (b/ |i—j])%. This model is known to present an Anderson transition
at a=1 between localized (a>1) and extended (a<<1) states with critical properties that depend continuously
on the parameter b. Our numerical results for the multifractal spectra ®,(«) for various b are in agreement with
the relation ®(k=0)=2[f(a=d+%)—d] in terms of the singularity spectrum f(«) of individual critical eigen-
functions, in particular the typical exponents are related via the relation riy,(b)=2[ ayy,(b) —d]. We also discuss

the statistics of the two-point transmission in the delocalized phase and in the localized phase.
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I. INTRODUCTION

Since its discovery 50 years ago,! Anderson localization
has remained a very active field of research (see the reviews
in Refs. 2-8). One of the most important property of Ander-
son localization transitions is that critical eigenfunctions are
described by a multifractal spectrum f(«) defined as follows
(for more details see for instance the reviews in Refs. 6 and
8): in a sample of size L? the number N;(a) of points 7,
where the weight |¢(7)|* scales as L™ behaves as

Ni(a) « /9, (1)
L—oo

The inverse participation ratios (IPRs) can be then rewritten
as an integral over «,

Yq(L)Efdddrj,/,(mhz:fdaLf(a)L—qaLz L9 )
L —00

The exponent 7{g) can be obtained via a saddle-point calcu-
lation in «, and one obtains the Legendre transform
formula®®

q=f"(a),
m(q) =qa - f(a). (3)

These scaling behaviors, which concern individual eigen-
states ¢, can be translated for the local density of states,

pL(E’F) = E 5(E - En)|¢E”(F) 2’ (4)

as follows: for large L, when the L¢ energy levels become
dense, the sum of Eq. (4) scales as

pr(E,F) o= Ld|l//E(7)|2 (5)

and its moments involve the exponents 7(¢g) introduced in
Eq. (2)
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BT * 5 with Alg)=1g) ~dlg=1). (6)

These notions concern one-point functions, and it is natural
to consider also the statistics of two-point functions. In par-
ticular, a very interesting observable to characterize Ander-
son transitions is the two-point transmission 7; when the
disordered sample of size L? is attached to one incoming
wire and one outcoming wire:>! (i) it remains finite in the
thermodynamic limit only in the delocalized phase so that it
represents an appropriate order parameter for the conducting/
nonconducting transition; (ii) exactly at criticality, it displays
multifractal properties in direct correspondence with the
multifractality of critical eigenstates, i.e., it displays strong
fluctuations that are not captured by more global definitions
of conductance. More precisely, as first discussed in Ref. 9
for the special case of the two-dimensional quantum-Hall
transition, the critical probability distribution of the two-
point transmission 77 takes the form

Prob(T; ~ L™)dT « L*"dk, (7)
L—o
and its moments involve nontrivial exponents X(g)

T~ | del®®-ax o [7X@), (8)
L—o
As stressed in Ref. 9 the physical bound 7; =1 on the trans-
mission implies that the multifractal spectrum exists only for
k=0, and this termination at k=0 leads to a complete freez-
ing of the moments exponents

X(q) =X(qs) for q=qg )

at the value g, where the saddle point of the integral of Eq.
(8) vanishes «(g=gqg,)=0. It is very natural to expect some
relation between the two multifractal spectra f(«@) and ®(k),
and the possibility proposed in Ref. 9 is that before the freez-
ing of Eq. (9) occurs, the transmission should scale as the
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product of two independent local densities of states [Eq. (6)]
X(Q) = ZA(Q) for q = G (10)

We refer to Ref. 9 for physical arguments in favor of this
relation. Egs. (9) and (10) for the moments exponents are
equivalent to following relation between the two multifractal
spectra

@(K20)=2[f(a=d+g>—d]. (11)

In this paper, our aim is to test numerically these predic-
tions for the statistics of the two-point transmission 7, at the
critical points of the power-law random-banded matrix
(PRBM) model, where one parameter allows us to interpo-
late continuously between weak multifractality and strong
multifractality. We will also discuss the statistics of the two-
point transmission off criticality.

The paper is organized as follows. In Sec. II, we introduce
the PRBM model and the scattering geometry used to define
the two-point transmission. In Sec. III, we present our nu-
merical results concerning the multifractal statistics of the
two-point transmission at criticality. We then discuss the sta-
tistics of the two-point transmission in the localized phase
(Sec. IV) and in the delocalized phase (Sec. V), respectively.
Our conclusions are summarized in Sec. VI. Appendices A
and B contain more details on the numerical computations.

II. MODEL AND OBSERVABLES

Beside the usual short-range Anderson tight-binding
model in finite dimension d, other models displaying Ander-
son localization have been studied, in particular, the PRBM
model, which can be viewed as a one-dimensional model
with long-ranged random hopping decaying as a power law
(b/r)® of the distance r with exponent a and parameter b (see
below for a more precise definition of the model). The
Anderson transition at a=1 between localized (a>1) and
extended (a<1) states has been characterized in Ref. 11 via
a mapping onto a nonlinear sigma model. The properties of
the critical points at a=1 have been then much studied, in
particular, the statistics of eigenvalues'?>~'# and the multifrac-
tality —of  eigenfunctions,’>2° including  boundary
multifractality.?! The statistics of scattering phases, Wigner
delay times, and resonance widths in the presence of one
external wire have been discussed in Refs. 22 and 23. Re-
lated studies concern dynamical aspects,”* the case with no
on-site energies,” and the case of power-law hopping terms
in dimension d> 1.29-28 In this paper, we consider the PRBM
in a ring geometry (dimension d=1 with periodic boundary
conditions) in the presence of two external wires to measure
the transmission properties.

A. Power-law random-banded matrices with periodic
boundary conditions

We consider L sites i=1,2,...,L in a ring geometry with
periodic boundary conditions, where the appropriate distance
r;; between the sites i and j is defined as'®
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FIG. 1. (Color online) The ensemble of power-law random-
banded matrices of size L XL can be represented as a ring of L
sites, where the matrix element_Hl-,j between the sites i and j is a
Gaussian variable of zero mean H; ;=0 and of variance given by Eq.
(13) in terms of the distance r; ; of Eq. (12). In this paper, we study
the statistics of the Landauer transmission 7 =|t|> when an incom-
ing wire is attached at the site L/2 and an outgoing wire is attached
at the site L (see text for more details).

L (i — j)
(L) _ Zgn| 222
rij = 7Tsm( L . (12)
The ensemble of power-law random-banded matrices of size
L XL is then defined as follows: the matrix elements H, ; are
independent Gaussian variables of zero mean H; ;=0 and of
variance

— 1
H 12 = W (13)
b

The most important properties of this model are the follow-
ing. The value of the exponent a determines the localization
properties:!! for a>1 states are localized with integrable
power-law tails, whereas for a <1 states are delocalized. At
criticality a=1, states become multifractal’>'® and expo-
nents depend continuously on the parameter b, which plays a
role analog to the dimension d in short-range Anderson
transitions:'> the limit b>1 corresponds to weak multifrac-
tality (analogous to the case d=2+¢€) and can be studied via
the mapping onto a nonlinear sigma model,!" whereas the
case b<<1 corresponds to strong multifractality (analogous to
the case of high dimension d) and can be studied via Levitov
renormalization.!>?® Other values of b have been studied
numerically.!>-18

B. Scattering geometry used to define to two-point
transmission

In quantum coherent problems, the most appropriate char-
acterization of transport properties consists in defining a
scattering problem where the disordered sample is linked to
incoming wires and outgoing wires and in studying the re-
flection and transmission coefficients. This scattering theory
definition of transport, first introduced by Landauer,’® has
been often used for one-dimensional systems3!'=3* and has
been generalized to higher dimensionalities and multiprobe
measurements (see the review in Ref. 34). In the present
paper, we focus on the Landauer transmission for the scat-
tering problem shown on Fig. 1: an incoming wire is at-
tached at the site L/2 and an outgoing wire is attached at the
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site L. We are thus interested into the eigenstate |¢) that
satisfies the Schrodinger equation,

H|y) = E|4), (14)

inside the disorder sample characterized by the random H,;
and in the perfect wires characterized by no on-site energy
and by hopping unity between nearest neighbors. Within
these perfect wires, one requires the plane-wave forms

_ ik(x—x —ik(x—x
lr/fin(x = -xL/Z) =e ( L/2) +re ( LQ)?

lpoul(x = xL) = teik(x_xl‘) (15)

These boundary conditions define the reflection amplitude r
of the incoming wire and the transmission amplitude ¢ of the
outgoing wire. The Landauer transmission

TE|[|2=1—|}"|2 (16)

is then a number in the interval [0,1]. More details on the
numerical computation of the transmission in a given sample
are given in Appendix A.

To satisfy the Schrodinger Equation of Eq. (14) within the
wires with the forms of Eq. (15), one has the following re-
lation between the energy E and the wave vector k:

E=2cosk. (17)

To simplify the discussion, we will focus in this paper on the
case of zero energy E=0 (wave vector k=1r/2) that corre-
sponds to the center of the band.

In the following, we study numerically the statistical
properties of the Landauer transmission 7" for rings of size
50=L=1800 with corresponding statistics of 10X 108
=n (L) =2400 independent samples. For typical values, the
number n (L) of samples is sufficient even for the bigger
sizes, whereas for the measure of multifractal spectrum, we
have used only the smaller sizes where the statistics of
samples was sufficient to measure correctly the rare events.

III. STATISTICS OF THE TWO-POINT TRANSMISSION
AT CRITICALITY (a=1)

As recalled in Sec. I, the two-point transmission 7 is
expected to display multifractal statistics at criticality.” We
first focus on the scaling of the typical transmission before
we turn to the multifractal spectrum and the moments of
arbitrary order.

A. Typical transmission at criticality (a=1)

As discussed in Refs. 9 and 10, the typical transmission

TP = e L (18)
is expected to decay at criticality with some power law
1
T3P 1
L LojmoLKWP’ (19)

where the exponent ky, is directly related via the relation
Klyp = 2'(a’typ - d) (20)

to the typical exponent «, that characterizes the typical
weight of eigenfunctions
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FIG. 2. (Color online) Scaling of the typical transmission T{Lyp at
criticality a=1 for various values of the parameter b: (a) In TLyp
=In T} as a function of In L for various values of b=4 (V), 1 (O),
0.5 (), 0.25 (<€), 0.1 (A), and 0.05 (I>) (the two other values b
=10 and »=0.01 we have studied are not shown here for clarity):
the slope yields the typical exponent wiy,(b) of Eq. (22). (b) critical
exponent ky,(b) as a function of b.

PGy (21)

L%p’
This typical value «, corresponds to the maximum value
flayyp) =d of the multifractal spectrum f(e) introduced in Eq.
(1). (Note that in Refs. 9 and 10), ky, is denoted by X, and
ayyp by @). Here we have chosen to use the explicit notation
“typ” for clarity).

For the PRBM considered here, the dimension is d=1 and
critical exponents depend continuously on b. We show on
Fig. 2(a) the In 77 as a function of In L: the slopes allow us
to measure the exponents «y,(b)

In7(a=1,b)=In Ty (a=1,b) x - Kiyp(D)In L.
L—®

(22)

On Fig. 2(b), we show how the exponent «iy,(b) depends on
b. The values ky,(b) we have measured are listed in Table I,
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TABLE 1. Critical exponents as a function of b: (i) the exponent «y,(b) characterizes the typical transmission at criticality [see Eq. (22)],
(ii) the corresponding value of the typical exponent ayy,=1+ Ky, (b)/2 [see Eq. (20)] for the weight ¢2(7) of eigenfunctions [see Eq. (21)].

b b—0 0.0l 0.05 0.1 0.25 0.5 1 4 10 [ ——
Keyp(D) 2 1.92 1.64 1.33 0.77 0.46 0.25 0.08 0.04 0
atyp(b)=1+ﬁi2@ 2 1.96 1.82 1.66 1.38 1.23 1.12 1.04 1.02 1

together with the corresponding values of ayy,(b) obtained
via Eq. (20): these values of a,y,(b) are compatible with the
values of the maxima of the multifractal spectrum f(a) of
critical eigenstates measured in Ref. 15 (see Figs. 2 and 6 of
Ref. 15) and in Ref. 20 (see Figs. 2 and 3 of Ref. 20).

The two limits b>1 and b<<1 can be understood as fol-
lows. The case b> 1 corresponds to very weak multifractal-
ity with the typical exponent ay,— 1.'%2° Equation (20)
yields that the critical exponent xy, of the typical transmis-
sion becomes arbitrary small in the limit b — +%,

Kiyp(b — + ) — 0. (23)

The opposite limit b<<1 corresponds to very strong multi-
fractality with the typical exponent a,—2.'">* Equation
(20) thus yields

Kiyp(b — 0) — 2. (24)

B. Multifractal spectrum ®;(«) with termination at x=0

As recalled in Sec. I, the statistics of the two-point trans-
mission is expected to be multifractal at criticality, as a con-
sequence of the multifractal character of critical
eigenfunctions.” For the PRBM, the multifractal spectrum
®,(x) of Eq. (7) will depend continuously on the parameter
b

Prob(7T; ~ L™)dT » L®"¥dk. (25)
L—o
Since it describes a probability, the multifractal spectrum sat-
isfies @,(x) =0, and the maximal value ®,(x)=0 is reached
only for the typical value k= ky,(b) as discussed above

D[ K1y (0)] = 0. (26)

The relation of Eq. (20) between the two typical exponents
Kiyp(D) and ayy,(b) is expected to come from the more gen-
eral relation of Eq. (11) between the two multifractal spectra
®,(x) and fi,(@),

q>b(K20)=2[f,,(a=1+'2—<>—1] 27)

An essential property of the spectrum ®,(k) is that it exists
only for k=0 as a consequence of the physical bound T,
=1 so that it terminates at k=0 at the finite value

Dy(k=0)=2[f(a=1)-1]. (28)

To measure numerically the multifractal spectrum ®,(x),
we have used the standard method based on g measures of
Ref. 35 (see more details in Appendix B). To show how the

parameter b allows us to interpolate between weak multifrac-
tality and strong multifractality, we compare on Fig. 3(a) the
multifractal spectra ®,(k) for the three values b=1, b=0.1,
and b=0.01. For instance, for the value »=0.1, the termina-
tion value we measure ®,(k=0)~-0.58 is in agreement via
Eq. (28) with the value f;,(a=1)~0.71 of Fig. 6 of Ref. 15
and Fig. 2 of Ref. 20.

(b) q

FIG. 3. (Color online) Multifractal statistics of the critical two-
point transmission for three values b=1, b=0.1, and »=0.01: (a) the
multifractal spectra ®,(«) reach their maximum ®,[ «y,(b)]=0 at
the typical values ky,(b) and exactly terminate at finite values
@, (k=0). (b) the corresponding moments exponents X,(g) become
completely frozen for =g Xp(q = gs) =—Pp(k=0).
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C. Freezing transition of the moments exponents X;(q)

As usual, the multifractal statistics of Eq. (25) has for
consequence that the moments of arbitrary order ¢,

T ~ f drLPr9=ax o [ 7X@ (29)

Lo

are governed by nontrivial exponents X,(g) that can be ob-
tained via the saddle-point calculation

-X,(q) = mj())i[(Db(K) - kq]. (30)

As long as the saddle-point value satisfies «(g) =0, X,(q)
can be obtained via the usual Legendre transform formula

q=4(x),

Xp(q) = kg — Dy(x). (31

However above some threshold g, the saddle-point value
will saturate to the boundary value

k(g = qg) =0 (32)

and the exponent X(g) will saturate to the value

Xb(q = qsat) = Xb(Qsat) == (I)b(Kz 0) = 2[1 _fb(a = 1)]
(33)

This freezing phenomenon of X(g) at g, predicted in Ref. 9
means that all moments of order ¢g=g¢q, are dominated by
the rare events corresponding to a finite transmission 7= 1
whose measure behaves as LP(<=0),

We show on Fig. 3(a) the moments exponents X, (q) for
the three values b=1, b=0.1, and b=0.01. For instance for
b=0.1, the freezing value X;(q=gg,)~0.58 corresponds to
the termination value ®,(x=0)~—0.58 of Fig. 3(a).

It turns out that for Anderson transitions, a special sym-
metry of the multifractal spectrum f(«) has been proposed
(see Refs. 20 and 36 and references therein) that relates the
regions a=d and a=d via the relation f(2d-a)=f(a)+d
—a. This symmetry then fixes the value of ¢, where
k(g =0 or equivalently a(qg,)=d to be exactly

1

st =7 (34)
Numerically, it is difficult to measure precisely the value g
where the exponents X,(g) become completely frozen as a
consequence of finite-size corrections around this phase-
transition point for the X(g), as already found for the
quantum-Hall transition in Ref. 9 However Fig. 3(b) shows
that in the limit of strong multifractality (»=0.01), the nu-
merical saturation value is not far from the theoretical pre-
diction of Eq. (34).

IV. STATISTICS OF THE TWO-POINT TRANSMISSION IN
THE LOCALIZED PHASE (a>1)
A. Typical transmission in the localized phase

In usual short-range models, the localized phase is char-
acterized by exponentially localized wave functions, whereas

PHYSICAL REVIEW B 79, 205120 (2009)
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FIG. 4. (Color online) Typical two-point transmission in the
localized phase a> 1. The power-law decay of Eq. (35) is checked
here for the case b=0.1 and the two values a=1.4 and a=1.8: the
slopes of this log-log plot are of order 2a~2.8 and 2a~3.6. For
comparison, we also show the critical data for a=1 of slope
Kyyp(b=0.1) ~ 1.33.

in the presence of power-law hoppings, localized wave func-
tion can only decay with power-law integrable tails. For the
PRBM, it is moreover expected that the asymptotic decay is
actually given exactly by the power law of Eq. (13) for the
hopping term defining the model:!! |¢(r)|t2yp~1/ 4 As a
consequence in the localized phase a>1, one expects the
typical decay

1
TP (g > 1 —. 35
L (a )Lo—cmoLza ( )

As shown on Fig. 4, we have checked this power-law decay
of the typical transmission for the case »=0.1 and the two
values a=1.4 and a=1.8.

B. Histogram of (In 7;) in the localized phase (a>1)

We show on Fig. 5 the histograms P; of In 7} for the four
sizes L=100,200,400,800 in the localized phase a=1.4 for
the case b=0.1: these data seem to indicate that as L grows,
the probability distribution shifts to the left while keeping a
fixed shape. This means that the relative variable u=(In T},
—In T{P) with respect to the typical value discussed above
[see Eq. (35)] remains a finite variable as L— +. In addi-
tion, the left tail is governed by the exponent a~ 0.5

1
In Pu=(In T, —In T{?)] = Ju (36)
or equivalently after the change in variable 7= =%=e“
T, 1
P T=— | = —5. 37
( T?]p>7—>07'1/2 ( )

These properties can be understood by the following
simple argument. In the localized phase a>> 1, one may as-
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FIG. 5. (Color online) Histogram of of the two-point transmis-
sion in the localized phase a> 1: example for »=0.1 and a=1.4: (a)
histograms P; of In T}, for the four sizes L=100,200,400,800 (the
histograms for bigger sizes are more noisy and are not shown for
clarity) (b) same data in logarithmic scale to exhibit the tails dis-
cussed in the text.

sume that for large L, the transmission 7; is dominated by
the direct hopping term Hj,, ; (see Fig. 1),

2

X
Ty (a>1) = |Hpp? = =, 38
L(a )LHJ L/2,L| Lo 24 ( )

where x is a Gaussian variable of zero mean and variance
unity [see Eq. (13)]. In particular, its probability density is
finite near the origin P(x=0)>0. The change in variable

T
= E}ﬁ) o x2 (39)

then yields the power law of Eq. (37).
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V. STATISTICS OF THE TWO-POINT TRANSMISSION IN
THE DELOCALIZED PHASE (a<1)

A. Typical transmission in the delocalized phase

In the delocalized phase, the eigenfunctions are not mul-
tifractal anymore but monofractal with the single value
ge0c=d for the weight As a consequence, the typical trans-
mission is expected to remain finite as L— +oo (Ref. 9) [in
Eq. (20), the case ay,=d yields ky,=0]

TP o« TSP > 0. (40)
L—x
The two-point transmission is thus a good order parameter of
the transport properties.’

B. Histogram of (In 7;) in the delocalized phase a <1

We find that the whole probability distribution P;(In T)
converges for large L toward a fixed distribution P&°(In 7).
As an example, we show on Fig. 6 the histograms of (In 7})
for three sizes L=100,200,400 concerning the case b=1 and
a=0.75. These histograms stops at In 7=0 as a consequence
of the bound 7= 1. In the region of very small transmission
In T— —oo the log-log plot of Fig. 6(b) indicates the same
form as in Eq. (36)

In P&(In 7)

In T—-o

1

~InT 41
Jln (41)
or equivalently after a change in variable

Pdeloc ( T) o

T—»Oﬁ ' (42)

As explained around Eq. (39), this power-law behavior sim-
ply means that the transmission can be written as the square
T=x? of some random variable x that has a finite probability
density at the origin P(x=0) > 0. This means that all negative
moments of order g=-1/2 actually diverge in the delocal-
ized phase

1
f dTTIPY(T) = +oo. (43)
0 qg=-1/2

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we have studied numerically the statistics of
the two-point transmission 7 as a function of the size L in
the PRBM model that depends on two parameters (a,b): (i)
in the delocalized phase (a<1), we have found that the
probability distribution of 7; converges for L — + toward a
law P%°°(T) presenting the power law of Eq. (42) for T
—0. (i) in the localized phase (a>1), we have found that
the probability distribution P{*°(In ;) keeps a fixed shape
around the typical value In T%=In T, as L grows and the
typical value T3P decays only as the power law of Eq. (35) as
a consequence of the presence of power-law hoppings. (iii)
exactly at criticality (a=1), the statistics of the two-point
transmission 77 is multifractal: we have measured the multi-
fractal spectra ®,(k) as well as the moments exponents
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FIG. 6. (Color online) Histogram of of the two-point transmis-
sion in the delocalized phase a<1: example for b=1 and a=0.75
(a) the histograms of InT; for the three sizes L=100,200,400 co-
incide (the histograms for bigger sizes are more noisy and are not
shown for clarity) (b) same data in logarithmic scale to exhibit the
tail [see Eq. (41)].

X,(g) for various values of the parameter b that allows us to
interpolate between weak multifractality and strong multi-
fractality. We have tested in detail the various expectations of
Ref. 9 concerning the termination of ®,(x) at k=0, the
freezing of X,(g) above some value g = g, and the relations
with the singularity spectrum f,(a) of individual critical
eigenstates. To finish, we should stress that the relation of
Eq. (11) relates the transmission between two “bulk points”
to the “bulk multifractal spectrum” f(a). In localization
models, it is however more usual to attach leads to the
boundaries of the disordered sample: then the statistics of the
two-point transmission is related to the “surface multifractal
spectrum” as will be discussed in more details elsewhere.?’
We will also discuss in Ref. 37 the statistical properties of
the transmission for various scattering geometries involving
a large number of wires.

PHYSICAL REVIEW B 79, 205120 (2009)

APPENDIX A: COMPUTATION OF THE TWO-POINT
TRANSMISSION IN EACH SAMPLE

To compute the transmission of a given sample via Eq.
(16), we have to solve the Schodinger problem of Eq. (14)
with the scattering boundary conditions of Eq. (15). This can
be decomposed in two steps as follows.

1. Recursive elimination of the ““interior sites”

The first step consists in the iterative elimination of the
interior sites, i.e., of all the sites not connected to the external
wires (see Fig. 1). To eliminate the site i;, one uses the
Schodinger Eq. (14) projected on this site

Eyio) = Hy ; ilio) + 2 H;, /() (A1)
J
to make the substitution
. 1 .
i) = ﬁg Hio,jlﬁ(l) (A2)

— Higdg J

in all other remaining equations. Then from the point of view
of remaining sites, the hoppings are renormalized according
to

v — i HiifHiyj
L. = P
ij ij R

E-H (A3)

il

This procedure is stopped when the only remaining sites are
the two sites L/2 and L connected to the external wires (see
Fig. 1): the three real remaining parameters are the renormal-

ized hopping fIL/z,L and the two renormalized on-site ener-
gies Hyj1p and Hy ;.

2. Effective scattering problems for the two boundary sites

The second step consists in solving the scattering problem
for the two boundary sites L/2 and L connected to the exter-
nal wires (see Fig. 1) with the renormalized parameters ob-
tained above. The Schodinger Eq. (14) projected on the
boundary sites L/2 and L read

Eydx0) = Hy o poflxn) + Pl n = 1) + Hyp iy,

E(x;) = ﬁL,Llﬂ(xL) +(x, + 1) +H LinPxn).  (A4)

The boundary conditions of Eq. (15) fixes the following ratio
on the outgoing wire:

¢(XL+1) ik
- _=e .

lxp) (A3)

The following ratio:
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Wxpp—1)

R= s
Wxp)

(A6)

concerning the incoming wire can be then computed in terms
of the three real-renormalized parameters,

72
HL L2

E- (ﬁL,L +e') .

R=E- F]L/z,uz - (A7)

The reflexion coefficient r of Eq. (15) is then obtained as

R— e—ik
e*—R

) (A8)

r=

yielding the transmission of Eq. (16).

APPENDIX B: COMPUTATION OF THE MULTIFRACTAL
SPECTRUM OVER THE SAMPLES

To measure numerically the multifractal spectrum ®(«) of
Eq. (7) that characterizes the statistics of the transmission 77,
over the samples of size L, we have used the standard
method based on g measures of Ref. 35. More precisely, for
various sizes L, we have measured the transmission 77 (i) for
a number n,(L) of independent samples (i). Then for various
values of ¢, we have computed the moments of Eq. (8)

PHYSICAL REVIEW B 79, 205120 (2009)

ngy(L)
5 2 o

to extract the moments exponents X(g) as the slope of the
log-log plot

(B1)

In(79) « —X(¢)In L. (B2)
L—®
We have also computed the auxiliary observables
ng(L)
> [T())[~1n T,()]
i=1
K@) =" (B3)
> [T
i=1
and
Fi(q) = gK(q) + In(T}) (B4)
to obtain x(g) and ®[«(g)] as the slopes of
KL(q)LOc k(q)in L (B5)
and
FL(q)Loc ®[x(g)]in L (B6)

This yields a parametric plot in ¢ of the multifractal spec-
trum ®(k): on Fig. 3(a), each circle of coordinate [k, P (k)]
corresponds to a value of g.
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